Resit Exam — Partial Differential Equations (WBMA008-05)

Wednesday 9 July 2025, 15.00-17.00h

University of Groningen

Instructions

- 1. The use of calculators is *not* allowed. It is allowed to use a "cheat sheet" with notes (one sheet A4, both sides, handwritten, "wet ink").
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the grade is G = 1 + p/10.

Problem 1 (8 + 6 + 6 = 20 points)

Consider the following nonlinear transport equation:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \quad u(0, x) = f(x).$$

(a) Show that the solution u is constant along the characteristic curves satisfying the equation

$$\frac{dx}{dt} = u(t, x(t)).$$

- (b) Determine the characteristic curve through (0, y); express the answer in terms of f and y.
- (c) Assume f(x) = x. Explicitly compute the solution u(t,x) for all $t \ge 0$.

Problem 2 (20 points)

Consider the following equation:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad u(t,0) = 0, \quad \frac{\partial u}{\partial x}(t,1) - u(t,1) = 0.$$

Compute all nontrivial solutions of the form $u(t,x) = e^{\lambda t}v(x)$; consider the cases $\lambda > 0$, $\lambda = 0$, and $\lambda < 0$ separately.

Problem 3 (20 points)

Recall the following function:

$$G_0(x, y; \xi, \eta) = -\frac{1}{2\pi} \log ||(x, y) - (\xi, \eta)||,$$

where $\|\cdot\|$ denotes the Euclidean norm. Use this function and the method of images to construct the Green's function for Poisson's equation on the domain $\Omega = \{(x,y) \in \mathbb{R}^2 : y > x\}$.

Please turn over for problems 4 and 5!

Problem 4 (15 points)

Use Fourier transforms to solve the following heat equation:

$$\frac{\partial u}{\partial t} = \gamma \frac{\partial^2 u}{\partial x^2}, \quad t > 0, \quad -\infty < x < \infty,$$

where $\gamma > 0$ and the initial condition is given by $u(0,x) = \delta(x - \xi)$.

Problem 5 (15 points)

Assume that $v(t,x) = e^{\alpha \varphi(t,x)}$ satisfies the following heat equation:

$$\frac{\partial v}{\partial t} = \gamma \frac{\partial^2 v}{\partial x^2},$$

where $\gamma > 0$. Show that for $\alpha = -1/2\gamma$ the function $u = \varphi_x$ satisfies Burgers' equation:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \gamma \frac{\partial^2 u}{\partial x^2}.$$

Solution of problem 1 (8 + 6 + 6 = 20 points)

(a) Assume $t \mapsto x(t)$ satisfies the equation

$$\frac{dx}{dt} = u(t, x(t)),$$

and define the function

$$h(t) = u(t, x(t)).$$

Differentiating h with respect to t and using the chain rule gives

$$\frac{dh}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \frac{dx}{dt} = \frac{\partial u}{\partial t} + u(t, x(t)) \frac{\partial u}{\partial x} = 0.$$

(6 points)

We conclude that u is constant along a characteristic curve.

(2 points)

(b) Let x(t) be a characteristic curve through (0,y). Since the solution u is constant along the curve, we have

$$\frac{dx}{dt} = u(t, x(t)) = u(0, x(0)) = u(0, y) = f(y).$$

(3 points)

Therefore, the characteristic curve is a straight line given by the equation

$$x(t) = f(y)t + y$$
.

(3 points)

(c) Assume that the characteristic line through the point (0,y) also passes through the point (\bar{t},\bar{x}) . Then $\bar{x}=y\bar{t}+y$ and thus $y=\bar{x}/(\bar{t}+1)$. (3 points)

Since u is constant along a characteristic curve, we obtain

$$u(\bar{t}, \bar{x}) = u(0, y) = f(y) = y = \frac{\bar{x}}{\bar{t} + 1}.$$

Dropping the bars gives the explicit solution formula for u. (3 points)

Solution of problem 2 (20 points)

The ansatz $u(t,x) = e^{\lambda t}v(x)$ gives the following boundary value problem for v:

$$v''(x) - \lambda v(x) = 0$$
, $v(0) = 0$, $v'(1) - v(1) = 0$.

(2 points)

The case $\lambda = -\omega^2 < 0$ gives

$$v(x) = a\cos(\omega x) + b\sin(\omega x).$$

The boundary condition at x = 0 implies that a = 0. The boundary condition at x = 1 implies that

$$b(\omega\cos(\omega)-\sin(\omega))=0.$$

The equation $tan(\omega) = \omega$ has countably many solutions $\omega_k > 0$. These give the nontrivial solutions

$$v_k(x) = \sin(\omega_k x), \quad k = 1, 2, 3, \dots$$

(8 points)

The case $\lambda = 0$ gives v(x) = a + bx. The boundary conditions imply that a = 0 and that b is arbitrary. Setting b = 1 gives the nontrivial solution $v_0(x) = x$.

(3 points)

The case $\lambda = \omega^2 > 0$ gives

$$v(x) = a\cosh(\omega x) + b\sinh(\omega x)$$

The boundary condition at x = 0 implies that a = 0. The boundary condition at x = 1 implies that

$$b(\boldsymbol{\omega}\cosh(\boldsymbol{\omega}) - \sinh(\boldsymbol{\omega})) = 0.$$

For a nontrivial solution we need $tanh(\omega) = \omega$ which has no positive solutions. Therefore, we do not get nontrivial solutions in this case.

(7 points)

Solution of problem 3 (20 points)

The Green's function is constructed by setting

$$G(x, y; \xi, \eta) = G_0(x, y; \xi, \eta) + z(x, y; \xi, \eta),$$

where z is harmonic on Ω and satisfies $z = -G_0$ on $\partial \Omega$.

(5 points)

To a point $(\xi, \eta) \in \Omega$ we associate an image point $(\xi', \eta') \in \mathbb{R}^2 \setminus \overline{\Omega}$ and set

$$z(x, y; \xi, \eta) = \frac{a}{2\pi} \log ||(x, y) - (\xi', \eta')|| + \frac{b}{2\pi}.$$

This choice guarantees that z is harmonic in Ω . Now we have to determine the constants a and b such that the condition $z = -G_0$ on $\partial \Omega$ is satisfied.

(5 points)

The boundary of Ω is given by $\{(x,x):x\in\mathbb{R}.$ If we define $(\xi',\eta')=(\eta,\xi)$, which is the reflection of (ξ,η) through the line y=x, then we have

$$\|(x,x) - (\xi',\eta')\| = \|(x,x) - (\eta,\xi)\| = \|(x,x) - (\xi,\eta)\|$$

for all $x \in \mathbb{R}$.

(5 points)

This implies that the condition $z = -G_0$ on $\partial \Omega$ is satisfied when a = 1 and b = 0. Therefore, the Green's function is given by

$$G(x, y; \xi, \eta) = -\frac{1}{2\pi} \log \|(x, y) - (\xi, \eta)\| + \frac{1}{2\pi} \log \|(x, y) - (\eta, \xi)\|$$
$$= \frac{1}{4\pi} \log \frac{(x - \eta)^2 + (y - \xi)^2}{(x - \xi)^2 + (y - \eta)^2}.$$

(5 points)

Solution of problem 4 (15 points)

Taking Fourier transforms gives the ordinary differential equation

$$\frac{d\widehat{u}}{dt} = -\gamma k^2 \widehat{u}.$$

(3 points)

The solution is given by

$$\widehat{u}(t,k) = \widehat{u}(0,k)e^{-\gamma k^2 t} = \frac{e^{ik\xi}}{\sqrt{2\pi}}e^{-\gamma k^2 t}.$$

(3 points)

Using the table of Fourier transforms with $a = 1/4\gamma t$ gives

$$\mathscr{F}\left[e^{-ax^2}\right] = \frac{e^{-k^2/(4a)}}{\sqrt{2a}},$$
$$\mathscr{F}\left[e^{-x^2/4\gamma t}\right] = \sqrt{2\gamma t}e^{-k^2 t},$$
$$\mathscr{F}^{-1}\left[e^{-k^2 t}\right] = \frac{1}{\sqrt{2\gamma t}}e^{-x^2/4\gamma t}.$$

(6 points)

Finally, by using the translation property of the Fourier transform, we obtain

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \mathscr{F}^{-1} \left[e^{-ik\xi} e^{-k^2 t} \right] = \frac{1}{2\sqrt{\pi \gamma t}} e^{-(x-\xi)^2/4t}.$$

(3 points)

Solution of problem 5 (15 points)

If $v_t = \gamma v_{xx}$, then φ must satisfy the equation

$$\varphi_t = \gamma \varphi_{xx} + \alpha \gamma \varphi_x^2.$$

(5 points)

Differentiating with respect to x gives

$$\varphi_{tx} = \gamma \varphi_{xxx} + 2\alpha \gamma \varphi_x \varphi_{xx}.$$

(5 points)

Setting $u = \varphi_x$ and $\alpha = -1/2\gamma$ gives

$$u_t + uu_x = \gamma u_{xx}$$
.

(5 points)